Reg. No.

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2024.

(For those admitted in June 2021 and later)

PROGRAMME AND BRANCH: B.Sc., STATISTICS

SEM	SEM CATEGO		RY COMPONENT	COURSE CODE	COURSE TITLE						
V	PA	\RT - I	II ELECTIVE GENERIC	U21ST5E1A	OPERATIONS RESEARCH						
Date &	Sessi	on:15.	11.2024/ FN Tir	Maximum: 75 Marks							
eeyFQ.No.No.SECTION - A (10 X 1 = 10 Marks) Answer ALL Questions.											
CO1	K1	1.	State Operations research approach is.								
			a) Multi-disciplinary b) Intuitive								
			c) Objective d) Conditional								
CO1	K2	2.	Which of the following are th	he decision variable	es in O.R. model?						
			a) Parameters	b) Controllab	b) Controllable						
			c) Uncontrollable	d) Constants	d) Constants						
CO2	K1	3.	For maximization linear pro- terminated when all the net- a) Zero c) Non-negative	gramming problem -evaluations are. b) Negative d) Non-posit:	, the simplex method is ive						
CO2	K2	4.	Represent of primal, If dual	has an unbounded	solution.						
			a) An infeasible solutionb) A feasible solutionc) An unbounded solutiond) A graphical solution								
CO3	K1	5.	The solution to a transportation problem with m-sources and n-								
			destinations is feasible, if the number of allocations are.								
			a) m+n	b) m+n+1							
			c) m+n-1	d) m×n	d) m×n						
CO3	K2	6.	Write the method used to solve the assignment problem.								
			a) Reduced matrix method	b) Hungarian	method						
			c) MODI method	d) Big-M meth	nod						
CO4	K1	7.	When maximin and minimax values of the game are same?								
			a) Strategies are mixed	b) There is a	b) There is a saddle point						
c			c) Solution does not exit	d) Transporta	ation of problem						
CO4	K2	8.	Which principle can be used the game?	1 to reduce the size	of the pay-off matrix of						
			a) Dominance	b) Game tran	spose						
			c) Rotation reduction	duction d) Game inversion							
CO5	K1	9.	Network problems have advantage in terms of project.								
			a) Scheduling	duling b) Planning							
			c) Gaming	d) Both (a) an	nd (b)						
CO5	K2	10.	The term commonly used fo	r activity slack time	e is.						
	a) Total floatb) Free floatc) Independent floatd) All of the above										

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – B (</u> 5 X 5 = 25 Marks) Answer <u>ALL</u> Questions choosing either (a) or (b)											
CO1	K3	11a.	State the features of Operations Research. (OR)											
CO1	K3	11b.	What are the procedures of mathematical formulation of linear programming problem?											
CO2	K3	12a.	Define BIG-M method and specify its algorithm. (OR)											
CO2	K3	12b.	Explain various procedures for forming a dual problem.											
CO3	K4	13a.	Obtain an IBFS to the following transportation problem using the NWC rule.											
				D	E	2	F	י	C	ť	A	Available		
			А	11	13	3	1'	7	14	4	250			
			В	16	18	3 14 10 3				300	00			
			С	21	24	4	13	3	10	0		400		
			Requirement	200	22	5	27	'5	25	50				
CO3	K4	13b.	(OR) How to test for the Hungarian method in the assignment problem?											
CO4	K4	14a.	What is a payoff matrix? State the rule for determining saddle point. (OR)											
CO4	K4	14b.	Determine the optimum strategies for the following payoff matrix. $\begin{array}{c} P_2 \\ P_1 \begin{bmatrix} 5 & 1 \\ 3 & 4 \end{bmatrix}$											
CO5	K5	15a.	Specify the important rules of network construction. (OR)											
CO5	K5	15b.	Draw a network diagram for the following data.											
			Activity	A	В	С	D	E	F	G	Η	Ι	J	
			Preceding Activities	None	Α	А	B	A	В,Е	С	F,F	G	H,I	

Course Outcome	Bloom's K-level	Q. No.	<u>SECTION – C (</u> 5 X 8 = 40 Marks) Answer <u>ALL Q</u> uestions choosing either (a) or (b)
CO1	K3	16a.	Write in detail the advantages and limitations of the models in O.R. (OR)
CO1	K3	16b	Analyze the L.P.P through the graphical method. Max $z = 2x_1 + 3x_2$; S.C.: $x_1 + x_2 \le 30$, $x_1 - x_2 \ge 0$, $x_2 \ge 3$; $0 \le x_1 \le 20$ and $0 \le x_2 \le 12$.
CO2	K4	17a.	Examine the L.P.P. using simplex method. Max $z = 4x_1+10x_2$ S.C.: $2x_1+x_2 \le 50$, $2x_1+3x_2 \le 90$; $x_1 \ge 0$ and $x_2 \ge 0$. (OR)
CO2	K4	17b	Use two-phase simplex method to max $z = 5x_1 + 3x_2$ S.C.: $2x_1+x_2 \le 1$, $x_1+4x_2 \ge 6$ and $x_1, x_2 \ge 0$.

CO3	K4	18a.	Use Vogel's approximation method to obtain IBFS of the											
			transportation problem											
				D	E		F		G		Supply		7	
			<u>A</u>	11	13		17		14		250			
			В	16	18		14		10	0		300		
			C	21	24	13			10		400			
			Demand	200	225	225 275			250					
CO3	K4	18b	(OR) Find the optimum assignment and minimum total time from the							n the				
		•	following information.											
			E F G								Н			
			A 18		2	26			17			11		
			В	13	2	28			14			26		
			С	C 38		19			18			15		
			D	D 19		26			24			10		
			-											
CO4	K5 K5	19a. 19b	Determine which of the following two-person zero-sum games are strictly and fair. Player Player Player B B B a) Player $\begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$ B) Player $\begin{bmatrix} 0 & 2 \\ -1 & 4 \end{bmatrix}$ (OR) Solve the following 2 × 2 game graphically. Player B B_1 B_2 B_3 B_4 Player A_1 \begin{bmatrix} 2 & 1 & 0 & -2 \\ 1 & 0 & 2 & -2 \end{bmatrix}											
CO5	K5	20a.	 	_										
			Activ	vity		А	В	С	D	Е	F	G	Η	
	Immediate Predecessor			-	-	-	Α	В	С	D,E	F,G			
				to	1	1	2	1	2	2	3	1		
Estin		Estimated du	timated duration (days)		1	4	2	1	5	5	6	2		
					tp	7	7	8	1	14	8	15	3	
CO5	К5	20b	Draw the PERT network and find out the expected project completion time. (OR) (i) Distinction between CPM and PERT.											
			(ii) Discuss time-cost optimization algorithm.											